Turn a x86 binary back into C source code

- 24 mins

Arithmetic Instructions

mov eax,2 ; eax = 2 
mov ebx,3 ; ebx = 3
add eax,ebx ; eax = eax + ebx 
sub ebx, 2 ; ebx = ebx - 2

Accessing Memory

mox eax, [1234] ; eax = *(int*)1234 
mov ebx, 1234 ; ebx = 1234 
mov eax, [ebx] ; eax = *ebx 
mov [ebx], eax ; *ebx = eax 

Conditional Branches

cmp eax, 2 ; compare eax with 2 
je label1 ; if(eax==2) goto label1
 ja label2 ; if(eax>2) goto label2
jb label3 ; if(eax<2) goto label3 
jbe label4 ; if(eax<=2) goto label4
 jne label5 ; if(eax!=2) goto label5
 jmp label6 ; unconditional goto label6

Function calls

First calling a function: call func ; store return address on the stack and jump to func The first operations is to save the return pointer:

pop esi ; save esi 
Right before leaving the function:
pop esi ; restore esi
ret ; read return address from the stack and jump to it 

Modern Compiler Architecture

C code –> Parsing –> Intermediate representation –> optimization –> Low-level intermediate representation –> register allocation –> x86 assembly

High-level Optimizations

Inlining

For example, the function c:

int foo(int a, int b){
     return a+b }
 c = foo(a, b+1) 

translates to

c = a+b+1

Loop unrolling

The loop:

for(i=0; i<2; i++){
      a[i]=0;
 }
 

becomes

   a[0]=0; 
   a[1]=0; 

Loop-invariant code motion

The loop:
for (i = 0; i < 2; i++) {
 a[i] = p + q; 
} 

becomes:


temp = p + q;
for (i = 0; i < 2; i++) {
    a[i] = temp;
}
 

Common subexpression elimination

The variable attributions:

Arithmetic Instructions

mov eax,2 ; eax = 2 
mov ebx,3 ; ebx = 3
add eax,ebx ; eax = eax + ebx 
sub ebx, 2 ; ebx = ebx - 2

Accessing Memory

mox eax, [1234] ; eax = *(int*)1234 
mov ebx, 1234 ; ebx = 1234 
mov eax, [ebx] ; eax = *ebx 
mov [ebx], eax ; *ebx = eax 

Conditional Branches

cmp eax, 2 ; compare eax with 2 
je label1 ; if(eax==2) goto label1
 ja label2 ; if(eax>2) goto label2
jb label3 ; if(eax<2) goto label3 
jbe label4 ; if(eax<=2) goto label4
 jne label5 ; if(eax!=2) goto label5
 jmp label6 ; unconditional goto label6

Function calls

First calling a function: call func ; store return address on the stack and jump to func The first operations is to save the return pointer:

pop esi ; save esi 
Right before leaving the function:
pop esi ; restore esi
ret ; read return address from the stack and jump to it 

Modern Compiler Architecture

C code –> Parsing –> Intermediate representation –> optimization –> Low-level intermediate representation –> register allocation –> x86 assembly

High-level Optimizations

Inlining

For example, the function c:

int foo(int a, int b){
     return a+b }
 c = foo(a, b+1) 

translates to

c = a+b+1

Loop unrolling

The loop:

for(i=0; i<2; i++){
      a[i]=0;
 } 

becomes

   a[0]=0; 
   a[1]=0; 

Loop-invariant code motion

The loop:
for (i = 0; i < 2; i++) {
 a[i] = p + q; 
} 

becomes:

temp = p + q;
for (i = 0; i < 2; i++) {
    a[i] = temp;
}
 

Common subexpression elimination

The variable attributions:

a = b + (z + 1)
p = q + (z + 1)

becomes

temp = z + 1
a = b + z
p = q + z

Constant folding and propagation

The assignments:

a = 3 + 5
b = a + 1
func(b)

Becomes:

func(9)

Dead code elimination

Delete unnecessary code:

a = 1
if (a < 0) {
printf(ERROR!)
}

to

a = 1

Low-Level Optimizations

Strength reduction

Codes such as:

y = x * 2
y = x * 15

Becomes:

y = x + x
y = (x << 4) - x

Code block reordering

Codes such as :

if (a < 10) goto l1
printf(ERROR)
goto label2
l1:
    printf(OK)
l2:
    return;

Becomes:

if (a > 10) goto l1
printf(OK)
l2:
return
l1:
printf(ERROR)
goto l2

Register allocation

Instruction scheduling

Assembly code like:

mov eax, [esi]
add eax, 1
mov ebx, [edi]
add ebx, 1

Becomes:

mov eax, [esi]
mov ebx, [edi]
add eax, 1
add ebx, 1

a = b + (z + 1)
p = q + (z + 1)

becomes

temp = z + 1
a = b + z
p = q + z

Constant folding and propagation

The assignments:

a = 3 + 5
b = a + 1
func(b)

Becomes:

func(9)

Dead code elimination

Delete unnecessary code:

a = 1
if (a < 0) {
printf(ERROR!)
}

to

a = 1

Low-Level Optimizations

Strength reduction

Codes such as:

y = x * 2
y = x * 15

Becomes:

y = x + x
y = (x << 4) - x

Code block reordering

Codes such as :

if (a < 10) goto l1
printf(ERROR)
goto label2
l1:
    printf(OK)
l2:
    return;

Becomes:

if (a > 10) goto l1
printf(OK)
l2:
return
l1:
printf(ERROR)
goto l2

Register allocation

Arithmetic Instructions

mov eax,2 ; eax = 2 
mov ebx,3 ; ebx = 3
add eax,ebx ; eax = eax + ebx 
sub ebx, 2 ; ebx = ebx - 2

Accessing Memory

mox eax, [1234] ; eax = *(int*)1234 
mov ebx, 1234 ; ebx = 1234 
mov eax, [ebx] ; eax = *ebx 
mov [ebx], eax ; *ebx = eax 

Conditional Branches

cmp eax, 2 ; compare eax with 2 
je label1 ; if(eax==2) goto label1
 ja label2 ; if(eax>2) goto label2
jb label3 ; if(eax<2) goto label3 
jbe label4 ; if(eax<=2) goto label4
 jne label5 ; if(eax!=2) goto label5
 jmp label6 ; unconditional goto label6

Function calls

First calling a function: call func ; store return address on the stack and jump to func The first operations is to save the return pointer:

pop esi ; save esi 
Right before leaving the function:
pop esi ; restore esi
ret ; read return address from the stack and jump to it 

Modern Compiler Architecture

C code –> Parsing –> Intermediate representation –> optimization –> Low-level intermediate representation –> register allocation –> x86 assembly

High-level Optimizations

Inlining

For example, the function c:

int foo(int a, int b){
     return a+b }
 c = foo(a, b+1) 

translates to

c = a+b+1

Loop unrolling

The loop:

for(i=0; i<2; i++){
      a[i]=0;
 } 
becomes
   a[0]=0; 
   a[1]=0; 

Loop-invariant code motion

The loop:

for (i = 0; i < 2; i++) {
 a[i] = p + q; 
} 

becomes:

temp = p + q;
for (i = 0; i < 2; i++) {
    a[i] = temp;
}
 

Common subexpression elimination

The variable attributions:

Arithmetic Instructions

mov eax,2 ; eax = 2 
mov ebx,3 ; ebx = 3
add eax,ebx ; eax = eax + ebx 
sub ebx, 2 ; ebx = ebx - 2

Accessing Memory

mox eax, [1234] ; eax = *(int*)1234 
mov ebx, 1234 ; ebx = 1234 
mov eax, [ebx] ; eax = *ebx 
mov [ebx], eax ; *ebx = eax 

Conditional Branches

cmp eax, 2 ; compare eax with 2 
je label1 ; if(eax==2) goto label1
 ja label2 ; if(eax>2) goto label2
jb label3 ; if(eax<2) goto label3 
jbe label4 ; if(eax<=2) goto label4
 jne label5 ; if(eax!=2) goto label5
 jmp label6 ; unconditional goto label6

Function calls

First calling a function: call func ; store return address on the stack and jump to func The first operations is to save the return pointer:

pop esi ; save esi 
Right before leaving the function:
pop esi ; restore esi
ret ; read return address from the stack and jump to it 

Modern Compiler Architecture

C code –> Parsing –> Intermediate representation –> optimization –> Low-level intermediate representation –> register allocation –> x86 assembly

High-level Optimizations

Inlining

For example, the function c:

int foo(int a, int b){
     return a+b }
 c = foo(a, b+1) 

translates to

c = a+b+1

Loop unrolling

The loop:

for(i=0; i<2; i++){
      a[i]=0;
 } 

becomes

   a[0]=0; 
   a[1]=0; 

Loop-invariant code motion

The loop:
for (i = 0; i < 2; i++) {
 a[i] = p + q; 
} 

becomes:

temp = p + q;
for (i = 0; i < 2; i++) {
    a[i] = temp;
}
 

Common subexpression elimination

The variable attributions:

a = b + (z + 1)
p = q + (z + 1)

becomes

temp = z + 1
a = b + z
p = q + z

Constant folding and propagation

The assignments:

a = 3 + 5
b = a + 1
func(b)

Becomes:

func(9)

Dead code elimination

Delete unnecessary code:

a = 1
if (a < 0) {
printf(ERROR!)
}

to

a = 1

Low-Level Optimizations

Strength reduction

Codes such as:

y = x * 2
y = x * 15

Becomes:

y = x + x
y = (x << 4) - x

Code block reordering

Codes such as :

if (a < 10) goto l1
printf(ERROR)
goto label2
l1:
    printf(OK)
l2:
    return;

Becomes:

if (a > 10) goto l1
printf(OK)
l2:
return
l1:
printf(ERROR)
goto l2

Register allocation

Instruction scheduling

Assembly code like:

mov eax, [esi]
add eax, 1
mov ebx, [edi]
add ebx, 1

Becomes:

mov eax, [esi]
mov ebx, [edi]
add eax, 1
add ebx, 1

a = b + (z + 1)
p = q + (z + 1)

becomes

temp = z + 1
a = b + z
p = q + z

Constant folding and propagation

The assignments:

a = 3 + 5
b = a + 1
func(b)

Becomes:

func(9)

Dead code elimination

Delete unnecessary code:

a = 1
if (a < 0) {
printf(ERROR!)
}

to

a = 1

Low-Level Optimizations

Strength reduction

Codes such as:

y = x * 2
y = x * 15

Becomes:

y = x + x
y = (x << 4) - x

Code block reordering

Codes such as :

if (a < 10) goto l1
printf(ERROR)
goto label2
l1:
    printf(OK)
l2:
    return;

Becomes:

if (a > 10) goto l1
printf(OK)
l2:
return
l1:
printf(ERROR)
goto l2

Register allocation

Instruction scheduling

Assembly code like:

mov eax, [esi]
add eax, 1
mov ebx, [edi]
add ebx, 1

Becomes:

mov eax, [esi]
mov ebx, [edi]
add eax, 1
add ebx, 1

Instruction scheduling

Assembly code like:

mov eax, [esi]
add eax, 1
mov ebx, [edi]
add ebx, 1

Becomes:

mov eax, [esi]
mov ebx, [edi]
add eax, 1
add ebx, 1